CAMBRIDGE , UK—Feb 14, 2007—Nowadays, the term printed electronics is taken to include thin film electronics that will become printable. Most of the potential for printed electronics lies in what Toppan Forms calls Smart Media Products (SMP) which will be intelligent and mass producible yet often customisable as well. They will usually be used at the human interface or connected to networks and embedded ubiquitously into the environment. All this means that printed electronics will largely create new markets, such as tape around pipelines to detect leaks and impending leaks and signal that there is a problem. After all, leaks still occur in the Trans Alaska pipeline, in refineries and in utility pipes underground.
Certainly, printed electronics will commonly take the form of tape, “wallpaper”, posters, patches and packaging rather than electronic equipment. Electronically savvy companies already making patches, tape or packaging such as 3M and Toppan Printing will be more comfortable with this world than the big computer and telecommunications businesses or even the silicon chip makers.
Smart everything
Basically, we are scoping a major change throughout society from the smart shop and office to the smart home. The US Army plans to use printed electronics to reduce the weight of a warfighter’s pack by two thirds and give him smart clothing that generates electricity, heats him, cools him, monitors vital signs, acts as a long range antenna and so on. Printed electronics can reduce cost but it also involves sophisticated structures some of which perform better and are more fault tolerant than traditional alternatives. Most commonly, it will be used where traditional technology is simply not a feasible solution.
Printed electronics technology
The biggest potential lies in organic or combined organic/inorganic structures because they often promise the lowest costs, allied to the fastest printing technology, such as gravure employing water-based inks, with low temperature curing. Inkjet is also a most popular choice because of its tolerance of uneven substrates and its instant reprogramming. The silicon chip has little to offer beyond logic, memory and a few small sensors because it is only economical when small. By contrast co-deposition of different devices using printed electronics can exploit the fact that it is economical with a large footprint. For example, actuators, batteries, powerful capacitors and resistors, photovoltaics and a considerable choice of wide area sensors will be codeposited without the need for conventional unreliable and expensive interconnects required when connecting silicon chips.
- Places:
- Cambridge





