The Truly Integrated Circuit Is Printed and Flexible

For 40 years, so called integrated circuits have integrated little more than transistors, diodes and sensors onto one piece of material but now there are much more integrated circuits arriving where most electrical and electronic components are co-deposited on flexible substrates.

Those flexible substrates are key, because this new electronics will be affordable and desirable on everything from apparel to human skin and electrical and consumer packaged goods, where surfaces are only rarely flat.

Savvy designers, seeking to use the new electronics to create “The iPod of labels”, or some other blockbuster product, think of the flexible substrate as part of functioning of the product. For example, there are flexible films that emit and detect ultrasound, act as loudspeakers or change shape under an electrical field. The latter use electroactive polymer film and the recent purchase of Artificial Muscle Inc AMI by Bayer MaterialScience is a nice reminder that there are plenty of exits for venture capitalists backing these new printed electronics companies.

Stretchable electronics
AMI polymer films, with printed stretchable electrodes, are used in the development, design and manufacture of actuators and sensing components. They offer significant advantages over traditional technologies used in this area. They provide touchscreen panels in consumer electronics with “awareness through touch” — haptics — by creating authentic tactile feedback, just like a conventional keyboard.

This innovative technology has significant application potential, particularly for electronic devices like smart phones, gaming controllers and touchpads. AMI initially targeted products for a range of applications including valves, pumps, positioners, power generation, snake-like, self-aiming camera lenses and sensors.

With the emergent need for haptics in consumer electronics, particularly in touchscreens, AMI used EPAM™ to create the Reflex™ brand of haptic actuators. These products are targeted at a wide range of consumer electronics including smartphones and other portable electronics, computer peripherals, gaming controllers and touchpads.

Meanwhile, MC10 Inc, a company formed to commercialize stretchable electronics, has recently made a licensing agreement with the University of Illinois at Urbana-Champaign. According to the terms of the agreement, MC10 Inc. will gain access to technology contained in patents dealing with stretchable silicon technology from Professor John Rogers’ laboratory.

The venture-backed start-up is currently developing processes and applications that enable high performance electronics to be placed in novel environments and form factors. MC10’s approach transforms traditionally rigid, brittle semiconductors into flexible, stretchable electronics while retaining excellent electrical performance.

Stretchable silicon allows for a degree of design freedom capable of expanding the functionality of existing products whilst providing a platform on which new microelectronic-enabled applications can be developed.

Related Content